
DEPARTMENT OF COMPUTER SCIENCE 
[UG Programme for Bachelor in Computer Science (Honours)] 

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE 
COURSE 

Course title 
& Code 

Credits Credit distribution of the course Eligibility 
criteria 

Pre-requisite of 
the course 

Lecture Tutorial Practical/ 
Practice 

DSC 13 
Algorithms 
and 
Advanced 
Data 
Structures 

4 3 0 1 Pass in 
Class XII 

DSC 07 Data 
Structures with 
C++, DSC 10 
Design and 
Analysis of 
Algorithms 

Learning Objectives  

This course is designed to build upon the fundamentals in data structures and algorithm design 
and gain exposure to more data structures and algorithms for new problems. 

Learning outcomes 

On successful completion of the course, students will be able to: 

● Comprehend and use data structures for lists.
● Use hash tables for dictionaries.
● Comprehend and use data structures and algorithms for string matching.
● Apply disk based data structures.
● Implement and analyze advanced data structures and algorithms for graphs.
● Describe the purpose  of randomization in data structures and algorithms.

Unit 1 (4 hours)   

List and Iterator ADTs: Vectors, Lists, Sequences 

DISCIPLINE SPECIFIC CORE COURSE - 13 (DSC-13) : Algorithms and Advanced Data 
Structures  

SEMESTER-5

270



Unit 2 (6 hours) 

Hash Tables, Dictionaries: Hash Functions, Collision resolution schemes. 

Unit 3 (8 hours) 

Strings: String Matching: KMP algorithm; Tries: Standard Tries, Compressed Tries, Suffix 

Tries, Search Engines  

Unit 4 (8 hours) 

More on Trees: 2-4 Trees, B Trees              

Unit 5 (8 hours) 

More on Graphs: Bellman Ford Algorithm, Union Find Data Structures - application 

Kruskal’s algorithm 

Unit 6 (6 hours) 

Randomization: Randomized Quicksort, Randomized Select, Skip lists 

Unit 7 (5 hours) 

Network Flows: Ford Fulkerson algorithm for max flow problem.  

 

Essential/recommended readings 

 
1. Goodrich, M.T, Tamassia, R., & Mount, D. Data Structures and Algorithms Analysis 

in C++, 2nd edition, Wiley, 2011. 
2. Cormen, T.H., Leiserson, C.E., Rivest, R. L., Stein C. Introduction to Algorithms, 4th  

edition, Prentice Hall of India, 2022. 
3. Kleinberg, J., Tardos, E. Algorithm Design, 1st edition, Pearson, 2013. 
4. Drozdek, A. Data Structures and Algorithms in C++, 4th edition, Cengage Learning. 

2012. 
 

 
Practical List : (30 Hours) 

Practical exercises such as 

1. Write a program to sort the elements of an array using Randomized Quick sort (the 
program should report the number of comparisons). 

2. Write a program to find the ith smallest element of an array using Randomized Select.  
3. Write a program to determine the minimum spanning tree of a graph using Kruskal’s 

algorithm. 
4. Write a program to implement the Bellman Ford algorithm to find the shortest paths 

from a given source node to all other nodes in a graph.  

271



5. Write a program to implement a B-Tree. 
6. Write a program to implement the Tree Data structure, which supports the following 

operations: 
I. Insert 

II. Search 
7. Write a program to search a pattern in a given text using the KMP algorithm. 
8. Write a program to implement a Suffix tree. 

 

 

 
Credit distribution, Eligibility and Prerequisites of the Course 
 
Course title 
& Code 

Credits Credit distribution of the course Eligibility 
criteria 

Pre-requisite of 
the course 
 Lecture Tutorial Practical/ 

Practice 

DSC 14 
Theory of 
Computati
on 

4 3 0 1 Pass in 
Class XII 

DSC04 Object 
Oriented 
Programming 
with C++ / 
GE1a 
Programming 
using C++ /A 
course in 
C/C++ at plus 2 
level 
 

 
 
Learning Objectives   

This course introduces formal models of computation, namely, finite automaton, pushdown 
automaton, and Turing machine; and their relationships with formal languages. make students 
aware of the notion of computation using abstract computing devices. Students will also learn 
about the limitations of computing machines as this course addresses the issue of which 
problems can be solved by computational means (decidability vs undecidability 

 
Learning outcomes   

 
On successful completion of the course, students will be able to:  
 

● design a finite automaton, pushdown automaton or a Turing machine for a problem at 
hand. 

DISCIPLINE SPECIFIC CORE COURSE – 14 (DSC-14):  Theory of Computation 
 

272



● apply pumping lemma to prove that a language is non-regular/non-context-free. 
● describe limitations of a computing machines and 
● recognize what can be solved and what cannot be solved using these machines.  

 
 
 
SYLLABUS OF DSC 14  
 
Unit 1 (7 hours) 

Introduction: Alphabets, string, language, basic operations on language, concatenation, 
union, Kleene star. 
 
Unit 2 (15 hours) 

Finite Automata and Regular:  Regular expressions, Deterministic Finite Automata (DFA), 
Non-deterministic Finite Automata (NFA), relationship between NFA and DFA, Transition 
Graphs (TG), properties of regular languages, the relationship between regular languages and 
finite automata, pumping lemma, Kleene’s theorem. 

Unit 3 (15 hours) 

Context-Free Languages (CFL): Context-Free Grammars (CFG), deterministic and non-
deterministic Pushdown Automata (PDA), relationship between CFG and PDA, parse trees, 
leftmost derivation, Ambiguities in grammars, pumping lemma for CFL, properties of CFL, 
Chomsky Normal Form. 
 
Unit 4 (8 hours) 
 
Turing Machines and Models of Computations: Turing machine as a model of computation, 
configuration of Turing machine, Recursive and recursively enumerable languages, Church 
Turing Thesis, Universal Turing Machine, decidability, Halting problem. 
 
 
Essential/recommended readings 

1. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, 
2nd Edition, Prentice Hall of India (PHI), 2002 

2. Daniel I.A. Cohen, Introduction to Computer Theory, 2nd Edition, Wiley India Pvt. 
Ltd., 2011. 

 
Additional References  
 

1. J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to Automata Theory, 
Languages and Computation, 3rd edition, Addison Wesley, 2006. 

2. Peter Linz, An Introduction to Formal Languages and Automata, 6th edition, Jones & 
Bartlett Learning, 2017. 

 
3. Michael Sipser, Introduction to the Theory of Computation, Cengage, 2014 

 
 

273



 
 

 
 
Credit distribution, Eligibility and Pre-requisites of the Course 
 
Course title & 
Code 

Credits Credit distribution of the 
course 

Eligibility 
criteria 

Pre-requisite of 
the course  

Lectur
e 

Tutorial Practical/ 
Practice 

DSC 15  
Software 
Engineering 

3 0 1 Pass in 
Class XII 

DSC01 
Programming 
using Python/ 
DSC04 Object 
Oriented 
Programming 
with C++/A 
course in 
C/C++ or 
Python at plus 2 
level 

 
Learning Objectives   
 
This course will acquaint the student with different approaches and techniques used to develop 
good quality software. The course includes learning of various software development process 
frameworks, requirement analysis, design modeling, qualitative and quantitative software 
metrics, risk management, and testing techniques. 
    
Learning outcomes  
 
On successful completion of the course, a student will be able to: 
 

● describe the software development models. 
● analyse and model customer requirements and build design models. 
● estimate and prepare schedule for software projects. 
● analyse the impact of risks involved in software development. 
● design and build test cases, and  perform software testing. 

 
 

SYLLABUS OF DSC 15 
 
Unit 1 (9 hours) 
 

DISCIPLINE SPECIFIC CORE COURSE– 15 (DSC-15): Software Engineering 
 

274



Introduction: Software Engineering - A Layered Approach; Software Process – Process 
Framework, Umbrella Activities; Process Models – Waterfall Model, Incremental Model, and 
Evolutionary process Model (Prototyping, Spiral Model); Introduction to Agile, Agile Model 
– Scrum.                
 
Unit 2 (6 hours) 
 
Software Requirements Analysis and Specification:  Use Case Approach, Software 
Requirement Specification Document, Flow-oriented Model, Data Flow Model 
 
Unit 3 (8 hours) 
 
Design Modeling: Translating the Requirements model into the Design Model, The Design 
Process, Design Concepts - Abstraction, Modularity and Functional Independence; Structure 
Charts. 
 
Unit 4 (7 hours) 
 
Software Metrics and Project Estimation: Function based Metrics, Software Measurement, 
Metrics for Software Quality; Software Project Estimation (FP based estimations); Project 
Scheduling (Timeline charts, tracking the schedule).           
 
Unit 5 (5 hours) 
 
Quality Control and Risk Management: Quality Control and Quality Assurance, Software 
Process Assessment and Improvement; Software Risks, Risk Identification, Risk Projection, 
Risk Mitigation, Monitoring and Management. 
 
Unit 6 (10 hours) 
 
Software Testing: Strategic Approach to Software Testing, Unit Testing, Integration Testing, 
Validation Testing, System Testing; Black-Box and White Box Testing, Basis Path Testing. 
 
 
Essential/recommended readings 
 

1. Pressman, R.S. Software Engineering: A Practitioner’s Approach, 9th edition, 
McGraw-Hill, 2020. 

2. Aggarwal, K.K., Singh, Y. Software Engineering, 3rd edition, New Age International 
Publishers, 2007.  

3. Jalote, P. An Integrated Approach to Software Engineering, 3rd Edition, Narosa 
Publishing House, 2005. 
 
 

Additional References 

275



1. Sommerville, I. Software Engineering, 9th edition, Addison Wesley, 2011. 
2. The Definitive Guide to Scrum: The Rules of the Game, Ken Schwaber, Jeff Sutherland, 

July 2016. 
 
Suggested Practical List :(30 Hours) 

 

Practical exercises such as 

 

The students document, design and code a module of a Software Project using an appropriate 

Software Process model. The Software Project should include the use of software engineering 

tools and include. 

1. Problem Statement, Process Model 

2. Requirement Analysis: Create Data Flow, Data Dictionary, Use Cases, Sequence 

Diagram, Software Requirement Specification Document 

3. Project Management: Timeline Chart, Compute FP, Effort, Cost, Risk Table. 

4. Design Engineering: Architectural Design, Pseudocode of a small module. 

5. Coding: Develop at least a single module using any programming Language 

6. Testing: Compute Basic path set for at least one module from a project, Generate test 

cases. 

  

Some of the sample projects are given below:  

1. Criminal Record Management: Implement a criminal record management system for 

jailers, police officers and CBI officers 

2. DTC Route Information: Online information about the bus routes and their frequency 

and fares. 

3. Car Pooling: To maintain a web-based intranet application that enables the corporate 

employees within an organization to avail the facility of carpooling effectively. 

4. Patient Appointment and Prescription Management System 

5. Organized Retail Shopping Management Software 

6. Online Hotel Reservation Service System 

7. Examination and Result computation System 

8. Automatic Internal Assessment System 

9. Parking Allocation System 

 

276


